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An Efficient 2-D FDTD Algorithm

Using Real Variables
S. Xiao, Student Member, IEEE, and R. Vahldieck, Senior Member, IEEE

Abstract— A two-dimensional finite difference time domain

(FDTD) method is proposed for the full-wave analysis of arbitrar-

ily shaped guided wave structures. By using a phase shift PAz

along the z-direction (propagation dkection), and assume the

limiting case of Az approaching zero, the propagation constant

of hybrid modes can be calculated by using a two-dimensional
mesh with a truly two-dimensiomd grid size. Furthermore, by

multiplying the field equation with an additional factor j, only

real variables are used in the computation, leading to a very fast

algorithm.

I. INTRODUCTION

sINCE Yee in 1966 [1] introduced the FDTD, the method

has beeu fitrther developed and is now well established as

a versatile technique to solve electromagnetic field problems.

The method is in particular attractive for transmission line

problems with complicated circuit contours. Application ex-

amples for transmission line problems have been reported, for

instance in [2]–[ 11]. Although the method has many attractive

features for time domain problems, one commonly known

disadvantage of the FDTD for frequency selective analysis

problems is that it requires large amounts of memory space

and CPU time, in particular for the full wave analysis of hybrid

modes in quasiplanar circuits, or in general, in inhomogeneous

waveguide structures. The large memory space and CPU time

requirement in the FDTD is mainly due to the fact that for a

full wave analysis of quasiplanar circuits a three-dimensional

mesh is required. Only after the impulse has reached stability

in the three-dimensional mesh (for full wave analysis), a

discrete Fourier transfotm selects the information of interest.

To alleviate this problem, the authors have introduced in

[12] a new FDTD approach for the frequency selective full-

wave analysis. This approach led to only a two-dimensional

mesh consisting of only one three-dimensional space grid

along the z-direction. This two-dimensional mesh could also

be regarded as one slice out of a three-dimensional mesh, with

the third dimension, the propagation direction, being replaced

by introducing a phase shift ~A.z. The resultant space grid

was only half of its normal size (Fig. 1). Since this approach

required only a two-dimensional mesh with a half-size space

grid and since the propagation constant was given as an input

parameter, the convergence rate was much faster than in the

conventional approach and the memory space was reduced
significantly.
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Fig. 1. FDTD meshes; (a) A novel 2-D FDTD mesh; (b) A modhied lFDTD
mesh with a truly 2-D grid.

In this letter, the idea published in [12] is taken one step

further in that the mesh size in the propagation direction is

approaching zero. A truly 2-D grid is obtained as shown in

Fig. 2. Although this step was already suggested in [15:1 and

was further investigated in [16] by a stability analysis, the

algorithm of both papers is still based on the processing of

complex variables. To avoid complex variables and to improve

the efficiency of this new 2-D FDTD technique even further,

we introduce a variable transformation that leads to a real-

variable algorithm. Therefore, in comparison to [12], [15], and

[16], the memory space and CPU-time are, on the average,

reduced by half.

II. THEORY

When the modes have been established a period of time

after the excitation in the transmission line, only a phase shift
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Fig. 2. Effective dielectric constant of a coupled microstrip line versus h/10,
C. = 9.7, w/h = 1.0, s/h = 0.1 [14].

exp{ –j~z} is involved at any adjacent nodes for any specific

propagation constant ~. This modal knowledge is used to

simplify the scheme. It is easy to see that any incident or

reflected impulse for any propagation constant ~ satisfies

Ii-:(x, y, z) II;(Z, y> z) E:(Z, y, z)

= {~f(L Y) ~J(z,Y) -V(X,Y)} =w {HPz}. (lb)

In [12], it was assumed that the discretization size Az in the

propagation direction was of finite value. This led to the half

grid size shown in Fig. 1 and (5) in [12]. However it is not

necessary to keep Az finite. Instead, if AZ approaches zero,

the discretized Maxwell’s equations yield (2) displayed at the

bottom of the page. Where At and AZ are, respectively, the

time step and the space step. The central finite difference

scheme has been used to discretize the space along the Z-

and y-directions as well as the time axis t. Now only a truly
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Fig. 3. Dispersion diagram of the anisotropic microstrip, a = 6.5 u

b=3.5mm, w=l.5mm, h=1.5 mm.

2-D grid is involved. Also, due to the additional factor j

in (la), we need to process only real-variables which make

the computation much faster. In addition, an arbitrary tensor

permittivity can be handled quite easily with this scheme.

III. NUMERICAL RESULT

Fig. 2 shows the dispersion diagram for a coupled microstrip

line. A comparison with [14] shows excellent agreement.

Fig. 3 shows the numerical results for a microstrip line with

anisotropic substrates. The result for the diagonal case (ezZ =

s., = 9.4, Evv = 11.6) is compared to the literature [3]. Good

agreement can be observed. For comparison, the off diagonal

case (.EZ. = &VV = 10.5, eZZ = 9.4, &ZY = &vZ = 1.1) is also

calculated and shown by the dashed line in Fig. 3. A more

complex structure is shown in Fig. 4. Compared with [13] the

{

At [E:(z, j + 1) – -E;(z>.i)l +BEn(i, ~,

H:+o’s(i, j) = Hg-””s(i,j) – ~

H;+o”’(z,j) = W-””’(2 j)

Ay Y
}

{

At [E$(i,j) – 13:(z + I,j)] +d~$(i,j)-—
Y>

LfJo Ax }

{

At [~;(i + l,j) – E;(i, j)] [E:(i,.j + 1) – ~:(i,~)]
H:+””’(i,j) = H:-o’s(i,j) - ~ —

Ax Ay
}

{

[H:+o’(i,j + 1) - Hfl+”’(i,j)] + ~Hn+05(i ~ + ~,
D:+l(i, j) = D;(i, j) + At

Ay Y

}

{

[qJ+m5(i,j + 1) - H:+0”5(~ + 1>~)1+ p~:+”.5(~ j + 1)

}

~;+l(i, j) = ~;(i, j) + At
Ax

>

(

[H;+””’(2 + l,j) - H;+””’(i,.j)] [H:+o”’(i,j + 1) - Hg+”’(i,j)].

}

(2)D;+l(i, j) = D;(i>.j) + At
Ax Ay
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Fig. 4. Dispersion in a shielded CPW analyzed by the FDTD and [13],

er = 3.75, b = 2h = 3.22 mm, b = 2.22 mm, h = 0.805, d = 0.154 mm,

t = 0.005.

results are in excellent agreement. The CPU-time required for

this improved method is less than what was needed in [12]

since the sinusoidal functions and the exponential functions

used in [12] are not involved in the new scheme due to AZ

equals zero.

IV. CONCLUSION

An improved 2-D FDTD mesh for the full-wave analysis of

inhomogeneous transmission lines has been introduced. Using

a truly 2-D grid the memory space and CPU-time of the

FDTD has been fi.trther reduced. Introducing a phase shift

in axial direction and chosing the propagation constant as

input parameter, allows a frequency selective application of the

FDTD. This approach makes the FDTD a very efficient tool

for practical CAD of various complicated microwave circuits.

The effects of losses on the propagation constant can be

included by using complex permittivities.
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